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Motivation and longterm programme

0. Motivation and longterm programme: Recall Classical Case (Linear!)

EXAMPLE

A
N
A
L
Y
S
I
S

Heat equation on Rd :

∂

∂t
u(t, x , y) =

1

2
∆yu(t, x , y), (t, y) ∈ (0,∞)× Rd

u(0, x , y) = δx (y) (= Dirac measure in x ∈ Rd )

Solution: Classical heat kernel

u(t, x , y) =
1

(2πt)
d
2

e−
1
2t

∥y−x∥2

GENERAL
Linear
Parabolic
PDE
(more
precisely:
linear
Fokker-
Planck
equation)

P
R
O
B
A
B
I
L
I
T
Y

Wiener measure Wx on C([0,∞);Rd )x [Wiener 1920]
For W (t) : C([0,∞);Rd )x → Rd ,
W (t)(w) := w(t), t ≥ 0,

(W (t))∗(Wx )(dy)
“push forward”

= u(t, x , y)dy , t > 0

(W (t))t≥0,Wx )x∈Rd “Wiener process”

(=“Brownian motion”)

xy
linear
Markov
process
(described
by SDE)
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Motivation and longterm programme

0. Motivation and longterm programme: Nonlinear Case (Projects A5 and
B1, CRC 1283)

EXAMPLE

A
N
A
L
Y
S
I
S

Porous media equation on Rd : For m ≥ 1

∂

∂t
u(t, x , y) =

1

2
∆y (|u|m−1u)(t, x , y), (t, x) ∈ (0,∞)× Rd

u(0, x , y) = δx (y) (= Dirac measure in x ∈ Rd )

Solution: Barrenblatt solution

u(t, x , y) = t−α[(c − k∥y − x∥2t−2β)+]
1

m−1 ,

where α := d
d(m−1)+2

, β := α
d
, k := α(m−1)

2md
and c > 0

s.th.
∫
Rd u(t, x , y) dy = 1.

GENERAL
Nonlinear
Parabolic
PDE
(more
precisely:
nonlinear
Fokker-
Planck
equation)

P
R
O
B
A
B
I
L
I
T
Y

∃ probability measure Px on C([0,∞);Rd )x such that

(X (t))∗(Px )(dy)
“push forward”

= u(t, x , y) dy , t > 0. (McKean!)

and Px := (X )∗(Wx )
“push forward”

, where

X : C([0,∞);Rd )x → C([0,∞);Rd )x solution of

dX (t) = |u(t, x ,X (t))|m−1dW (t), t ≥ 0, (X (0))∗(Px ) = δx .

((X (t))t≥0,Px )x∈Rd “nonlinear Brownian motion”

[Barbu/R. 2020, Ren/R./Wang 2022, Rehmeier/R. 2022]

McKean’s vision, PNAS 1966!

xy
nonlinear
(time-
inhomo-
geneous)
Markov
process
(described
by DDSDE)
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(Fractional) porous media equation perturbed by a transport term Recap: “Local” case

1. (Fractional) porous media equation perturbed by a transport term

1.1 Recap: “Local” case

Nonlinear
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
ϱ(t, x)−∆x (β(ϱ(t, x))) + divx (D(x)b(ϱ(t, x))ϱ(t, x)) = 0,

∀(t, x) ∈ (0,∞)× Rd , (FPE)

ϱ(0, ·) = µ0 ∈ Mb(Rd )

where Mb(Rd ) = all signed Borel measures on Rd of
bounded variation

Our approach:
solve this
first!

(nonlinear)

superposition

principle

[Barbu/R.: AOP 2020]

wwwww�
~wwwww Îto (or

Dynkin formula)

McKean-
Vlasov
SDE
(proba-
bilistically
weak sense)

dX (t) = D(X (t))b(ϱ(t,X (t)))dt +

(
2β(ϱ(t,X (t))

ϱ(t,X (t))

) 1
2

dW (t), t ≥ 0,

P ◦ X (0)−1 = µ0, P ◦ X (t)−1(dx) = ϱ(t, x)dx , t > 0. (MVSDE)
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(Fractional) porous media equation perturbed by a transport term Recap: “Local” case

Definition

A function ϱ : [0,∞) → Mb is said to be a distributional solution to (FPE) if

ϱ, β(ϱ) ∈ L1loc((0,∞)× Rd ),∫ ∞

0

∫
Rd

ϱ(t, x) [φt(t, x) + b(ϱ(t, x))D(x) · ∇φ(t, x)] + β(ϱ(t, x))∆φ(t, x)dt dx (wFPE)

+

∫
φ(0, x)µ0(dx) = 0, ∀φ ∈ C∞

0 ([0,∞)× Rd ).
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(Fractional) porous media equation perturbed by a transport term Today: “Nonlocal”(=fractional in space) case

1.2 Today: “Nonlocal”(=fractional in space) case

Nonlinear
fractional
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
ϱ(t, x)+ (−∆x)

s(β(ϱ(t, x))) + divx (D(x)b(ϱ(t, x))ϱ(t, x)) = 0,

∀(t, x) ∈ (0,∞)× Rd , s ∈
(1
2
, 1
)
, (FPEs)

ϱ(0, ·) = µ0 ∈ Mb(Rd )

Our
approach:
solve this
first!

(nonlinear) nonlocal

superposition

principle

[R./Xie/Zhang: PTRF 2020]

wwwww�
~wwwww Îto (or

Dynkin formula)

McKean-
Vlasov
SDE with
multi-
plicative
Lévy noise
(proba-
bilistically
weak sense)

dX (t) = D(X (t))b(ϱ(t,X (t)))dt +

(
2β(ϱ(t,X (t-))

ϱ(t,X (t-))

) 1
2s

dL(t), t ≥ 0,

P ◦ X (0)−1 = µ0, P ◦ X (t)−1(dx) = ϱ(t, x)dx , t > 0. (MVSDEs)
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(Fractional) porous media equation perturbed by a transport term Today: “Nonlocal”(=fractional in space) case

Definition

A function ϱ : [0,∞) → Mb is said to be a distributional solution to (FPEs) if

ϱ, β(ϱ) ∈ L1loc((0,∞)× Rd ),∫ ∞

0

∫
Rd

ϱ(t, x) [φt(t, x) + b(ϱ(t, x))D(x) · ∇φ(t, x)] + β(ϱ(t, x))− (−∆)sφ(t, x)dt dx

(wFPEs)

+

∫
φ(0, x)µ0(dx) = 0,∀φ ∈ C∞

0 ([0,∞)× Rd ).
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(Fractional) porous media equation perturbed by a transport term Next time: ”Nonlocal”(=Bernstein) case

1.3 Next time: “Nonlocal”(=Bernstein) case

Let Ψ : R+ → R+ be a Bernstein function.

Nonlinear
fractional
Fokker–
Planck
equation
(distri-
butional
solutions)

∂

∂t
ϱ(t, x) +Ψ(−∆x)(β(ϱ(t, x))) + divx (D(x)b(ϱ(t, x))ϱ(t, x)) = 0,

∀(t, x) ∈ (0,∞)× Rd , (FPEψ)

ϱ(0, ·) = µ0 ∈ Mb(Rd )

Our
approach:
solve this
first!

(nonlinear) nonlocal

superposition

principle

[R./Xie/Zhang: PTRF 2020]

wwwww�
~wwwww Îto (or

Dynkin formula)

McKean-
Vlasov
SDE with
multi-
plicative
Lévy noise
(proba-
bilistically
weak sense)

P probability measure on D([0,∞);Rd ) solving the martingale

problem for (Lt ,C
2
c (Rd )) such that

P ◦ X (0)−1 = µ0, P ◦ X (t)−1(dx) = ϱ(t, x)dx , t > 0. (MVSDEψ)
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(Fractional) porous media equation perturbed by a transport term Next time: ”Nonlocal”(=Bernstein) case

Here

Lt f (x) = b(ϱ(t, x))D(x) ·∇f (x) +
β(ϱ(t, x))

ϱ(t, x)
p.v .−

∫
Rd

(
f (x + z)− f (x)

)
νΨ(dz)

with

νΨ(dz) =

∫ ∞

0
(2t)−

d
2 e−

|z|2
2t µ(dt)dz and Ψ(r) =

∫ ∞

0
(1− e−rt)µ(dt).

Definition

A function ϱ : [0,∞) → Mb is said to be a distributional solution to (FPEψ) if

ϱ, β(ϱ) ∈ L1loc((0,∞)× Rd ),∫ ∞

0

∫
Rd

ϱ(t, x) [φt(t, x) + b(ϱ(t, x))D(x) · ∇φ(t, x)] + β(ϱ(t, x))−Ψ(−∆)φ(t, x)dt dx

(wFPEψ)

+

∫
φ(0, x)µ0(dx) = 0, ∀φ ∈ C∞

0 ([0,∞)× Rd ).
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Nonlinear FPE with fractional Laplacian: existence of distributional solutions

2. Nonlinear FPE with fractional Laplacian: existence of distributional
solutions

From now on: Change of notation: u(t, x) instead of ϱ(t, x).

Consider the nonlocal nonlinear Fokker–Planck equation (N2FPE)

ut + (−∆)sβ(u) + div(Db(u)u) = 0 on (0,∞)× Rd ,
u(0, x) = u0(x), x ∈ Rd ,

(N2FPE)

where d ≥ 2 and (−∆)s , 1
2
< s < 1, is the fractional Laplace operator defined as follows. Let

S ′ := S ′(Rd ) be the dual of the Schwartz test function space S := S(Rd ). Define

Ds := {u ∈ S ′; F(u) ∈ L1loc(R
d ), |ξ|2sF(u) ∈ S ′} (⊃ L1(Rd ))

and

F((−∆)su)(ξ) = |ξ|2sF(u)(ξ), ξ ∈ Rd , u ∈ Ds ,
where F stands for the Fourier transform in Rd , that is,

F(u)(ξ) = (2π)−d/2
∫
Rd

e ix·ξu(x)dx , ξ ∈ Rd , u ∈ L1(Rd ).

(F extends from S ′ to itself.)

(N2FPE) is used for modelling the dynamics of anomalous diffusion of particles in disordered
media.
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Nonlinear FPE with fractional Laplacian: existence of distributional solutions

Hypotheses

(i) β ∈ C1(R) ∩ Lip(R), β(0) = 0, β′(r) > 0, ∀ r ̸= 0.

(ii) D ∈ C1(Rd ;Rd ), divD ∈ L2loc(R
d ).

(iii) b ∈ Cb(R).
(iv) (divD)− ∈ L∞, b ≥ 0.

Define an operator on L1(Rd )

A0(u) := (−∆)sβ(u) + div(Db(u)u), u ∈ D(A0),

D(A0) :=
{
u ∈ L1(Rd ); (−∆)sβ(u) + div(Db(u)u) ∈ L1(Rd )

}
,

where div is taken in the sense of Schwartz distributions on Rd .
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Nonlinear FPE with fractional Laplacian: existence of distributional solutions

The following lemma is crucial.

Lemma 1

Assume that 1
2
< s < 1. Then, under Hypotheses (i)–(iv) there is λ0 > 0 and a family of

operators {Jλ : L1 → L1;λ > 0)} (”nonlinear resolvent”), which for all λ ∈ (0, λ0) satisfies

(I + λA0)(Jλ(f )) = f , ∀ f ∈ L1,

|Jλ(f1)− Jλ(f2)|1 ≤ |f1 − f2|1, ∀f1, f2 ∈ L1,

Jλ2
(f ) = Jλ1

(
λ1

λ2
f +

(
1−

λ1

λ2

)
Jλ2

(f )

)
, ∀f ∈ L1, λ1, λ2 > 0,∫

Rd
Jλ(f )dx =

∫
Rd

f dx , ∀f ∈ L1,

Jλ(f ) ≥ 0, a.e. on Rd , if f ≥ 0, a.e. on Rd ,

|Jλ(f )|∞ ≤ (1 + ||D|+ (divD)−|
1
2∞)|f |∞, ∀ f ∈ L1 ∩ L∞,

β(Jλ(f )) ∈ Hs ∩ L1 ∩ L∞, ∀f ∈ L1 ∩ L∞.
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Nonlinear FPE with fractional Laplacian: existence of distributional solutions

Proof of Lemma 1

Hard! About 11 pages. Idea: Prove existence of a solution y = yλ ∈ D(A0) to the equation

y + λA0(y) = f in S ′,

for f ∈ L1 by first considering the approximating equation

y + λ(εI −∆)s(βε(y)) + λ div(Dεbε(y)y) = f in S ′,

where ε ∈ (0, 1] and for r ∈ R, βε(r) := β(r) + εr and

Dε := ηεD, ηε ∈ C1
0 (R

d ), 0 ≤ ηε ≤ 1, |∇ηε| ≤ 1, ηε(x) = 1 if |x | <
1

ε
,

bε(r) ≡
(b ∗ φε)(r)

1 + ε|r |
,

where φε(r) =
1
ε
φ ( r

ε
) is a standard mollifier.

Then let ε → 0. □
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Nonlinear FPE with fractional Laplacian: existence of distributional solutions

Now define

D(A) := Jλ(L
1) (⊂ D(A0)),

A(y) := A0(y), y ∈ D(A).

Again it is easy to see that Jλ(L
1) is independent of λ ∈ (0, λ0) and that

Jλ = (I + λA)−1, λ ∈ (0, λ0). (”Nonlinear resolvent”)
Then we have

Lemma 2

Under Hypotheses (i)–(iv), the operator (A,D(A)) defined above is m-accretive in L1 and

(I + λA)−1 = Jλ, λ ∈ (0, λ0). Moreover, if β ∈ C∞(R), then D(A) = L1.

Here, D(A) is the closure of D(A) in L1.
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Nonlinear FPE with fractional Laplacian: existence of distributional solutions

Then by the Crandall-Liggett theorem for u0 ∈ D(A), t ≥ 0

S(t)u0 := lim
n→0

(I +
t

n
A)−nu0 (=

′′e−tAu′′0 ) (”Euler formula”)

converges in L1 and we have the following:

Theorem I

Assume that Hypotheses (i)–(iv) hold. Then S(t) : L1 → L1, t ≥ 0, is a C0-semigroup of

contractions such that for each u0 ∈ D(A), (= L1, if β ∈ C∞(R)), u(t, u0) := S(t)u0 is a
distributional solution to (N2FPE). Moreover, if u0 ≥ 0, a.e. on Rd ,

u(t, u0) ≥ 0, a.e. on Rd , ∀ t ≥ 0,
and ∫

Rd
u(t, u0)(x)dx =

∫
Rd

u0(x)dx , ∀ t ≥ 0.

Finally, if u0 ∈ L1 ∩ L∞, then all above assertions remain true, if we drop the assumption
β ∈ Lip(R) from Hypothesis (i), and additionally we have that u ∈ L∞((0,T)× Rd ),T > 0.
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Nonlinear FPE with fractional Laplacian: uniqueness of distributional solutions

3. Nonlinear FPE with fractional Laplacian: uniqueness of distributional
solutions

Assume s ∈ ( 1
2
, 1) and

Hypotheses

(j) β ∈ C1(R), β′(r) > 0, ∀ r ∈ R, β(0) = 0.

(jj) D ∈ L∞(Rd ;Rd ).

(jjj) b ∈ C1(R).

Theorem II

Let s ∈
(
1
2
, 1
)
, T > 0, and let y1, y2 ∈ L∞((0,T )×Rd ) be two distributional solutions to

(N2FPE) on (0,T )× Rd such that y1 − y2 ∈ L1((0,T )× Rd ) ∩ L∞(0,T ; L2) and

lim
t→0

ess sup
s∈(0,t)

|(y1(s)− y2(s), φ)2| = 0, ∀φ ∈ C∞
0 (Rd ). (IC)

Then y1 ≡ y2. If D ≡ 0, then Hypothesis (j) can be relaxed to

(j)′ β ∈ C1(R), β′(r) ≥ 0, ∀ r ∈ R, β(0) = 0.
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Nonlinear FPE with fractional Laplacian: uniqueness of distributional solutions

Theorem III (”Linearized uniqueness.”)

Under assumptions of Theorem II, let T > 0, u ∈ L∞((0,T )× Rd ) and let
y1, y2 ∈ L∞((0,T )× Rd ) with y1 − y2 ∈ L1((0,T )× Rd ) ∩ L∞(0,T ; L2) be two distributional
solutions to the equation

yt + (−∆)s
(
β(u)

u
y

)
+ div(yDb(u)) = 0 on D′((0,T )× Rd ,

y(0) = u0,

where u0 is a measure of finite variation on Rd and β(0)
0

:= β′(0). If (IC) holds, then y1 ≡ y2.
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Applications to McKean–Vlasov SDEs of Nemytskii–type with Levy–Noise Existence

4. Applications to McKean–Vlasov SDEs of Nemytskii–type with
Levy–Noise
4.1 Existence

Theorem IV

Assume that Hypotheses (i)–(iv) hold and let u0 ∈ L1. Assume that u0 ∈ D(A) (= L1, if
β ∈ C∞(R)) and let u be the solution of (N2FPE) from Theorem I. Then, there exist a
stochastic basis B := (Ω,F , (Ft)t≥0,P) and a d -dimensional isotropic 2s-stable process L with

Lévy measure dz
|z|d+2s as well as an (Ft)-adapted càdlàg process (Xt) on Ω such that, for

LXt (x) :=
d(P ◦ X−1

t )

dx
(x), t ≥ 0,

we have

dXt = D(Xt)b(LXt (Xt))dx +

(
2β(LXt (Xt−))

LXt (Xt−)

) 1
2s

dLt ,

LX0
= u0.

(MVSDEs)

Furthermore,

LXt = u(t, ·), t ≥ 0,

in particular, ((t, x) 7→ LXt (x)) ∈ L∞([0,T ]× Rd ) for every T > 0.
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Applications to McKean–Vlasov SDEs of Nemytskii–type with Levy–Noise Existence

Proof. By the well known formula that

(−∆)s f (x) = −cd,sP.V.−
∫
Rd

(f (x + z)− f (x))
dz

|z|d+2s

with cd,s ∈ (0,∞), and since, as an easy calculation shows,∫
A

β(u(t, x))

u(t, x)

dz

|z|d+2s
=

∫
Rd

1A

((
β(u(t, x))

u(t, x)

) 1
2s

z

)
dz

|z|d+2s
,

A ∈ B(Rd \ {0}),
we have

β(u(t, x))

u(t, x)
(−∆)s f (x)

= −cd,sP.V.

∫
Rd

(
f

(
x +

(
β(u(t, x))

u(t, x)

) 1
2s

z

)
− f (x)

)
dz

|z|d+2s
.

Hence by Hypotheses (i)-(iv) the (nonlocal!) superposition principle proved in [R./Xie/Zhang,
PTRF 2020] applies to show that there exists a stochastic basis B and (Xt)t≥0 as in the assertion

of the theorem, as well as a Poisson random measure N on Rd × [0,∞) with intensity
|z|−d−2sdz dt on the stochastic basis B such that for

Lt :=

∫ t

0

∫
|z|≤1

zÑ(dz ds) +

∫ t

0

∫
|z|>1

z N(dz ds),

with
Ñ(dz dt) := N(dz dt)− |z|−d−2sdz dt

(MVSDEs) holds. □

M. Röckner (Bielefeld) NFPEs with Fractional Laplacian and McKean-Vlasov SDEs with Lévy-Noise 20 / 23



Applications to McKean–Vlasov SDEs of Nemytskii–type with Levy–Noise Uniqueness

4.2 Uniqueness

Theorem V

Assume that Hypotheses (j)–(jjj), resp. (j)′, (jj), (jjj) if D ≡ 0, hold and let T > 0. Let (Xt)

and (X̃t) be two càdlàg processes on two (possibly different) stochastic bases B, B̃ that are weak

solutions to (MVSDE) with (possibly different) L and L̃. Assume that

((t, x) 7→ LXt (x)) ,
(
(t, x) 7→ L

X̃t
(x)
)
∈ L∞((0,T )× Rd ).

Then X and X̃ have the same laws, i.e.,

P ◦ X−1 = P̃ ◦ X̃−1.

Proof. Clearly, by Dynkin’s formula both

µt(dx) := LXt (x)dx and µ̃t(dx) := L
X̃t
(x)dx

solve (N2FPE) with the same initial condition u0(dx) := u0(x)dx , hence satisfy (IC) with
y1(t) := LXt and y2(t) := L

X̃t
. Hence, by Theorem II,

LXt = L
X̃t

for all t ≥ 0,

since t 7→ LXt (x)dx and t 7→ L
X̃t
(x)dx are both narrowly continuous and are probability

measures for all t ≥ 0, so both are in L∞(0,T ; L1 ∩ L∞) ⊂ L∞(0,T ; L2).
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Applications to McKean–Vlasov SDEs of Nemytskii–type with Levy–Noise Uniqueness

Now, consider the linear Fokker–Planck equation

vt + (−∆)s
β(LXt

)

LXt
v + div(Db(LXt )v) = 0,

v(0, x) = u0(x),

(lFPE)

again in the distributional sense. Then, by Theorem III we conclude that LXt , t ∈ [0,T ], is the
unique solution to (lFPE) in L∞(0,T ; L1 ∩ L∞). Again by Dynkin’s formula, both P ◦ X−1 and

P̃ ◦ X̃−1 solve the martingale problem with initial condition u0(dx) := u0(x)dx for the linear
Kolmogorov operator

KLXt
:= −

β(LXt )

LXt

(−∆)s + b(LXt )D · ∇.

Since the above is true for all u0 ∈ L1 ∩ L∞, and also holds when we consider (N2FPE) and
(lFPE) with start in any s0 > 0 instead of zero, it follows by exactly the same arguments as in the
proof of Lemma 2.12 in [Trevisan: EJP 2016] that

P ◦ X−1 = P̃ ◦ X̃−1. □
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Applications to McKean–Vlasov SDEs of Nemytskii–type with Levy–Noise Nonlinear Markov process in the sense of McKean

4.3 Nonlinear Markov process in the sense of McKean

Let for s ∈ [0,∞) and Z := {ζ ≡ ζ(x)dx | ζ ∈ L1 ∩ L∞, ζ ≥ 0, |ζ|1 = 1}

P(s,ζ) := P ◦ X−1(s, ζ),
where (Xt(s, ζ))t≥0 on a stochastic basis B denotes the solution of (MVSDEs) with initial
condition ζ at s. Then by Theorems II, III and V, it follows that P(s,ζ), (s, ζ) ∈ [0,∞)× Z , form
a nonlinear Markov process in the sense of [McKean: PNAS 1966]. and [Rehmeier/R.:arXiv
2212.12424v2]. For the proof see the latter paper and [Ren/R. Wang: JDE 2022, Corollary 4.6].
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